Chemistry 2

Lecture 2 Particle in a box approximation

Learning outcomes from Lecture 1

- energy difference, and the resonance integral, β . Use the principle that the mixing between orbitals depends on the
- structure in simple organic molecules. •Apply the separation of σ and π bonding to describe electronic
- molecules in terms of s-p mixing Rationalize differences in orbital energy levels of diatomic

Assumed knowledge for today

atomic orbitals on carbon atoms. and account for each valence electron. Predict the hybridization of Be able to predict the geometry of a hydrocarbon from its structure

The de Broglie Approach

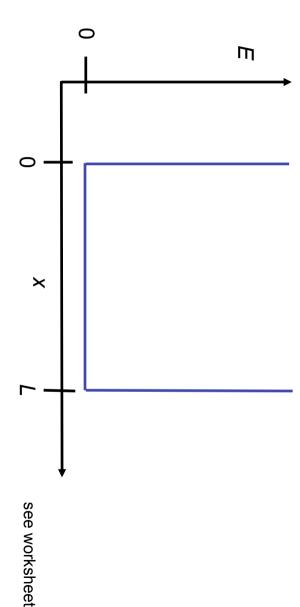
a particle is related to its momentum: The wavelength of the wave associated with

$$p = mv = h / \lambda$$

- For a particle with only kinetic energy: $E = \frac{1}{2} mv^2 = p^2 / 2m = h^2 / 2m\lambda^2$
- For a free particle, λ, can have any value: E for a free particle is not quantized

"The particle in a box"

potential, where the particle cannot be... The box is a 1d well, with sides of infinite



Energy is quantized:

$$E_n = h^2 n^2 / 8mL^2$$

Lowest energy (zero point) is not zero: $E_{n=1} = h^2 / 8mL^2$

$$E_{n=1} = h^2 / 8mL^2$$

Allowed levels are separated by:

$$\Delta E = E_{n+1} - E_n = h^2(2n+1) / 8mL^2$$

The Schrödinger Equation Approach

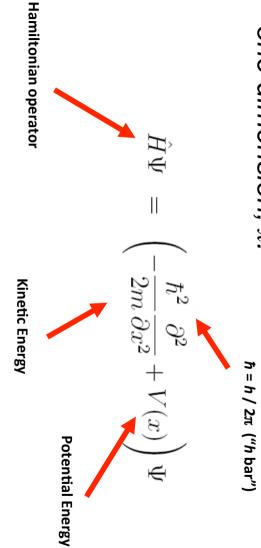
- Hamiltonian operator. The total energy is extracted by the
- of a quantum particle These are the "observable" energy levels

Energy eigenfunction

$$\hat{H}\Psi(x)=\epsilon_i\Psi(x)$$
 Hamiltonian operator

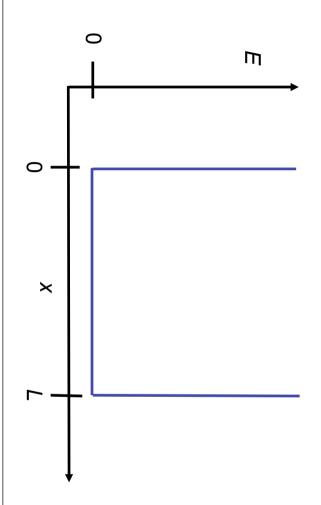
The Schrödinger equation

to Kinetic Energy and Potential Energy. In one dimension, x: The Hamiltonian has parts corresponding

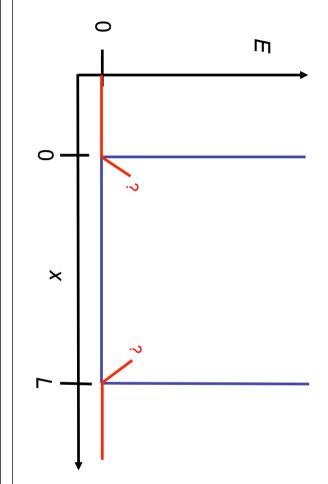


"The particle in a box"

potential, where the electron cannot be... The box is a 1d well, with sides of infinite

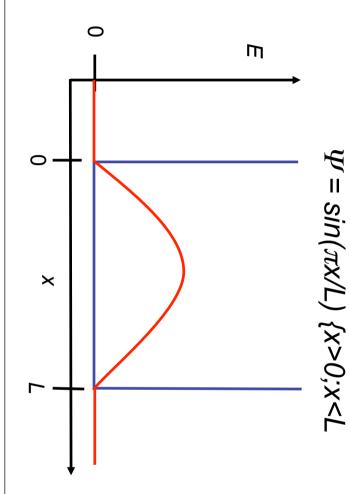


 $\Psi = 0 \{x < 0; x > L \text{ (boundary conditions)}$ The particle cannot exist outside the box...



"The particle in a box"

Let's try some test solutions



$$\hat{H}\Psi = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi + V(x) \Psi \quad \text{Zero potential inside box}$$

$$= -\frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \Psi \right) + 0 \tilde{\Psi}$$

$$= -\frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \sin(\pi x/L) \right)$$

$$= -\frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\pi/L \cos(\pi x/L) \right)$$

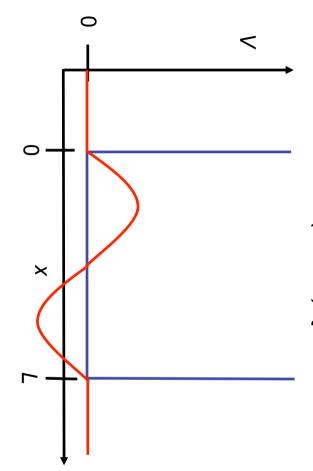
$$= -\frac{\hbar^2}{2m} \left(-\pi^2/L^2 \sin(\pi x/L) \right)$$

$$= \frac{\hbar^2 \pi^2}{2mL^2} \sin(\pi x/L) = \frac{\hbar^2 \pi^2}{2mL^2} \Psi = \mathcal{E}\Psi \quad \mathbf{1} \mathbf{1}$$

"The particle in a box"

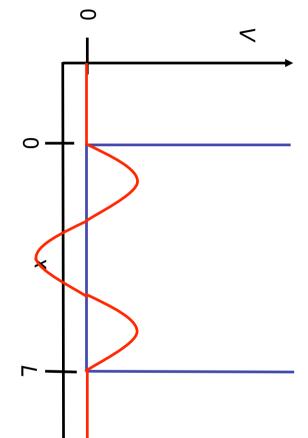
Other solutions?

$$\Psi = \sin(2\pi x/L) \{x > 0; x < L$$



Other solutions?

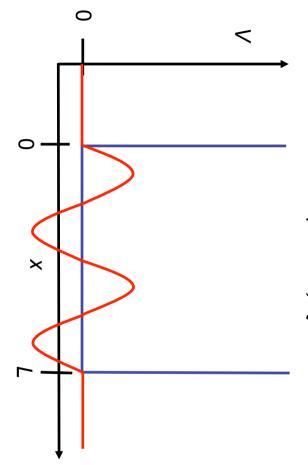
$$\Psi = \sin(3\pi x/L) \{x > 0; x < L$$



"The particle in a box"

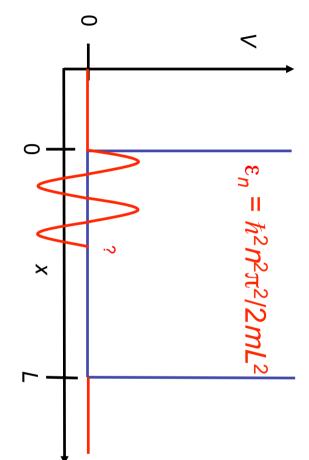
Other solutions?

$$\Psi = \sin(4\pi x/L) \{x > 0; x < L$$



Other solutions?

$$\Psi = \sin(n\pi x/L) \{x > 0; x < L$$



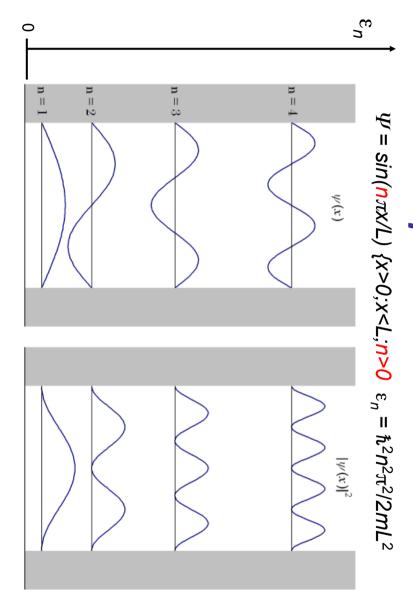
"The particle in a box"

$$\Psi = \sin(n\pi x/L) \{x>0; x0$$

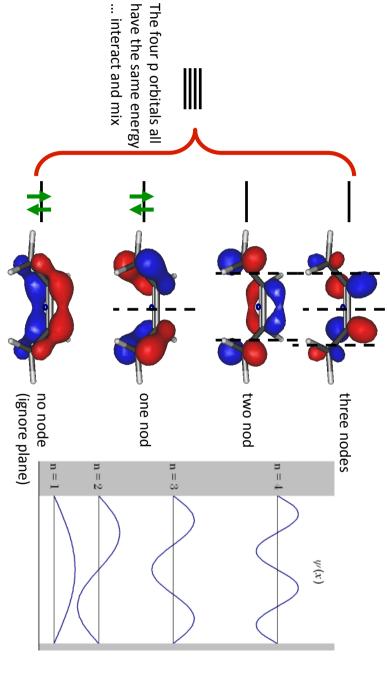
$$\varepsilon_n = \hbar^2 n^2 \pi^2 / 2mL^2$$

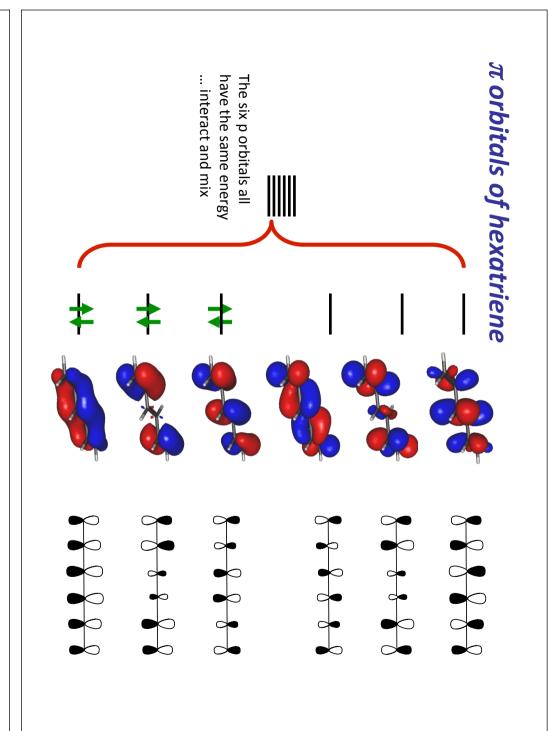
Philosophical question: why is n = 0 not an appropriate solution?

Hint: what's the probability of observing the particle?



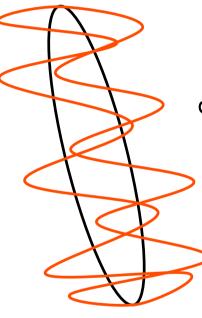
π orbitals of cis-butadiene





Something to think about

Particle on a ring



Must fit even wavelengths into whole cycle

Next lecture

Particle-on-a-ring model

Week 10 tutorials

orbitals for diatomic molecules Schrödinger equation and molecular

Learning outcomes

- quantization of its energy levels Be able to explain why confining a particle to a box leads to
- Be able to explain why the lowest energy of the particle in a box is
- the electronic structure of a conjugated molecule (given equation Be able to apply the particle in a box approximation as a model for

Practice Questions

- The energy levels of the particle in a box are given by $\varepsilon_n = \hbar^2 n^2 p^2 / 2mL^2$.
- (a) Why does the lowest energy correspond to n = 1 rather than n = 0?
- **b** What is the separation between two adjacent levels? (*Hint*: $\Delta \varepsilon = \varepsilon_{n+1} - \varepsilon_n$)
- <u>(C</u> electrons. What is energy of the HOMO - LUMO gap? (Hint: The π chain in a hexatriene derivative has L=973 pm and has 6 π remember that 2 electrons are allowed in each level.)
- <u>a</u> What does the particle in a box model predicts happens to the HOMO - LUMO gap of polyenes as the chain length increases?